Amini, M., Zayeri, F. & Salehi, M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health 21(1), 401 (2021).
Google Scholar
Ang, C. S. & Chan, K. M. A review of coronary artery disease research in Malaysia. Med. J. Malays. 71(Suppl 1), 42–57 (2016).
Google Scholar
National Heart Association of Malaysia (NHAM) and the Ministry of Health Malaysia. Annual Report of the NCVD-ACS Registry Year 2018–20192022. https://www.malaysianheart.org/?p=highlights&a=1796.
Lee, C. Y. et al. Sex and gender differences in presentation, treatment and outcomes in acute coronary syndrome, a 10 year study from a multi-ethnic Asian population: The Malaysian National Cardiovascular Disease Database-Acute Coronary Syndrome (NCVD-ACS) registry. PLoS ONE 16(2), e0246474 (2021).
Google Scholar
Mandelzweig, L. et al. The second Euro Heart Survey on acute coronary syndromes: Characteristics, treatment, and outcome of patients with ACS in Europe and the Mediterranean Basin in 2004. Eur. Heart J. 27(19), 2285–2293 (2006).
Google Scholar
D’Agostino, R. B. Sr. et al. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 117(6), 743–753 (2008).
Google Scholar
McKay, A. J. et al. Universal screening at age 1–2 years as an adjunct to cascade testing for familial hypercholesterolaemia in the UK: A cost-utility analysis. Atherosclerosis 275, 434–443 (2018).
Google Scholar
Ranthe, M. F. et al. A detailed family history of myocardial infarction and risk of myocardial infarction: A nationwide cohort study. PLoS ONE 10(5), e0125896 (2015).
Google Scholar
Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update: A report From the American Heart Association. Circulation 135(10), e146–e603 (2017).
Google Scholar
Poorzand, H. et al. Risk factors of premature coronary artery disease in Iran: A systematic review and meta-analysis. Eur. J. Clin. Invest. 49(7), e13124 (2019).
Google Scholar
Ohira, T. & Iso, H. Cardiovascular disease epidemiology in Asia: An overview. Circ. J. 77(7), 1646–1652 (2013).
Google Scholar
Department of Statistics Malaysia. Statistics on Causes of Death, Malaysia, 2021 (Department of Statistics Malaysia, 2022). https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=401&bul_id=R3VrRUhwSXZDN2k4SGN6akRhTStwQT09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09#.
Muda, Z., Kadir, A. A., Yusof, Z. & Yaacob, L. H. Premature coronary artery disease among angiographically proven atherosclerotic coronary artery disease in North East of peninsular Malaysia. Int. J. Collab. Res. Intern. Med. Public Health 5(7), 507 (2013).
Lee, C. Y. et al. Are there gender differences in coronary artery disease? The Malaysian National Cardiovascular Disease Database-Percutaneous Coronary Intervention (NCVD-PCI) Registry. PLoS ONE 8(8), e72382 (2013).
Google Scholar
Shah, S. A. et al. Prevalence and risk factors of premature coronary artery disease: A comparative cross-sectional study between two time frames in Malaysia. Malays. J. Public Health Med. 15, 157–166 (2015).
Zuhdi, A. S. et al. Young coronary artery disease in patients undergoing percutaneous coronary intervention. Ann. Saudi Med. 33(6), 572–578 (2013).
Google Scholar
Aggarwal, A., Srivastava, S. & Velmurugan, M. Newer perspectives of coronary artery disease in young. World J. Cardiol. 8(12), 728–734 (2016).
Google Scholar
Vikulova, D. N. et al. Premature atherosclerotic cardiovascular disease: Trends in incidence, risk factors, and sex-related differences, 2000 to 2016. J. Am. Heart Assoc. 8(14), e012178 (2019).
Google Scholar
Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34(45), 3478–3490 (2013).
Google Scholar
Arnett, D. K., Khera, A. & Blumenthal, R. S. 2019 ACC/AHA Guideline on the Primary prevention of cardiovascular disease: Part 1, Lifestyle and Behavioral Factors. JAMA Cardiol. 4(10), 1043–1044 (2019).
Google Scholar
Toell, T. et al. Familial hypercholesterolaemia in patients with ischaemic stroke or transient ischaemic attack. Eur. J. Neurol. 25(2), 260–267 (2018).
Google Scholar
Hosmer, D. W. & Lemesbow, S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat.-Theory Methods 9(10), 1043–1069 (1980).
Google Scholar
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Routledge, 2017).
Google Scholar
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
Google Scholar
Abderrahman, H. A., Al-Abdallat, I. M. & Idhair, A. K. Age threshold for proper definition of premature coronary artery disease in males. J. Forensic Leg. Med. 58, 45–49 (2018).
Google Scholar
Reibis, R. et al. Disparity in risk factor pattern in premature versus late-onset coronary artery disease: A survey of 15,381 patients. Vasc. Health Risk Manag. 8, 473–481 (2012).
Google Scholar
Ahmad, W. A. W. et al. The journey of Malaysian NCVD—PCI (National Cardiovascular Disease Database—Percutaneous Coronary Intervention) Registry: A summary of three years report. Int. J. Cardiol. 165(1), 161–164 (2013).
Google Scholar
Aggarwal, A., Aggarwal, S., Sarkar, P. G. & Sharma, V. Predisposing factors to premature coronary artery disease in young (age </= 45 years) smokers: A single center retrospective case control study from India. J. Cardiovasc. Thorac. Res. 6(1), 15–19 (2014).
Google Scholar
Kannel, W. B., Dawber, T. R., Friedman, G. D., Glennon, W. E. & McNamara, P. M. Risk factors in coronary heart disease. An evaluation of several serum lipids as predictors of coronary heart disease; the Framingham Study. Ann. Intern. Med. 61, 888–99 (1964).
Google Scholar
Rubin, J. B. & Borden, W. B. Coronary heart disease in young adults. Curr. Atheroscler. Rep. 14(2), 140–149 (2012).
Google Scholar
Maroszynska-Dmoch, E. M. & Wozakowska-Kaplon, B. Clinical and angiographic characteristics of coronary artery disease in young adults: A single centre study. Kardiol. Pol. 74(4), 314–321 (2016).
Google Scholar
Bajaj, S. et al. Acute ST-segment elevation myocardial infarction in young adults: Who is at risk?. Coron. Artery Dis. 22(4), 238–244 (2011).
Google Scholar
Chacko, M., Sarma, P. S., Harikrishnan, S., Zachariah, G. & Jeemon, P. Family history of cardiovascular disease and risk of premature coronary heart disease: A matched case-control study. Wellcome Open Res. 5, 70 (2020).
Google Scholar
Bachmann, J. M., Willis, B. L., Ayers, C. R., Khera, A. & Berry, J. D. Association between family history and coronary heart disease death across long-term follow-up in men: The Cooper Center Longitudinal Study. Circulation 125(25), 3092–3098 (2012).
Google Scholar
Valdez, R., Yoon, P. W., Qureshi, N., Green, R. F. & Khoury, M. J. Family history in public health practice: A genomic tool for disease prevention and health promotion. Annu. Rev. Public Health 31, 69–87 (2010).
Google Scholar
Allport, S. A., Kikah, N., Abu Saif, N., Ekokobe, F. & Atem, F. D. Parental age of onset of cardiovascular disease as a predictor for offspring age of onset of cardiovascular disease. PLoS ONE 11(12), e0163334 (2016).
Google Scholar
Filoche, S. et al. How is family health history discussed in routine primary healthcare? A qualitative study of archived family doctor consultations. BMJ Open 11(10), e049058 (2021).
Google Scholar
Conway-Pearson, L. S. et al. Family health history reporting is sensitive to small changes in wording. Genet. Med. 18(12), 1308–1311 (2016).
Google Scholar
Leander, K., Hallqvist, J., Reuterwall, C., Ahlbom, A. & de Faire, U. Family history of coronary heart disease, a strong risk factor for myocardial infarction interacting with other cardiovascular risk factors: Results from the Stockholm Heart Epidemiology Program (SHEEP). Epidemiology 12(2), 215–221 (2001).
Google Scholar
Nasir, K. et al. Coronary artery calcification and family history of premature coronary heart disease: Sibling history is more strongly associated than parental history. Circulation 110(15), 2150–2156 (2004).
Google Scholar
Prabhakaran, D. & Jeemon, P. Should your family history of coronary heart disease scare you?. Mt. Sinai J. Med. 79(6), 721–732 (2012).
Google Scholar
Sesso, H. D. et al. Maternal and paternal history of myocardial infarction and risk of cardiovascular disease in men and women. Circulation 104(4), 393–398 (2001).
Google Scholar
Kolber, M. R. & Scrimshaw, C. Family history of cardiovascular disease. Can. Fam. Physician 60(11), 1016 (2014).
Google Scholar
Wu, C. Y. et al. High blood pressure and all-cause and cardiovascular disease mortalities in community-dwelling older adults. Medicine (Baltimore) 94(47), e2160 (2015).
Google Scholar
Christofaro, D. G. D., Casonatto, J., Vanderlei, L. C. M., Cucato, G. G. & Dias, R. M. R. Relationship between resting heart rate, blood pressure and pulse pressure in adolescents. Arq. Bras. Cardiol. 108(5), 405–410 (2017).
Google Scholar
Oparil, S. et al. Hypertension. Nat. Rev. Dis. Primers 4, 18014 (2018).
Google Scholar
Fernandes, R. A. et al. Resting heart rate is associated with blood pressure in male children and adolescents. J. Pediatr. 158(4), 634–637 (2011).
Google Scholar
Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet 387(10022), 957–967 (2016).
Google Scholar
World Health Organization. Hypertension. (2021).
Cai, Q., Mukku, V. K. & Ahmad, M. Coronary artery disease in patients with chronic kidney disease: A clinical update. Curr. Cardiol. Rev. 9(4), 331–339 (2013).
Google Scholar
Mach, F. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 41(1), 111–188 (2020).
Google Scholar
Clinical Practice Guidelines of Stable Coronary Artery Disease. Clinical Practice Guidelines of Stable Coronary Artery Disease 2018 2nd edn. (National Heart Association of Malaysia, 2018).
Clinical Practice Guidelines on Management of Dyslipidaemia. Clinical Practice Guidelines on Management of Dyslipidaemia 5th Edition: Ministry of Health. (2017).
Sadeghi, R., Adnani, N., Erfanifar, A., Gachkar, L. & Maghsoomi, Z. Premature coronary heart disease and traditional risk factors-can we do better?. Int. Cardiovasc. Res. J. 7(2), 46–50 (2013).
Google Scholar
Hosseini, K. et al. Prevalence and trends of coronary artery disease risk factors and their effect on age of diagnosis in patients with established coronary artery disease: Tehran Heart Center (2005–2015). BMC Cardiovasc. Disord. 21(1), 477 (2021).
Google Scholar
Obaya, M., Yehia, M., Hamed, L. & Fattah, A. A. Comparative study between elderly and younger patients with acute coronary syndrome. Egyp. J. Crit. Care Med. 3(2–3), 69–75 (2015).
Google Scholar
Matsis, K. et al. Differing clinical characteristics between young and older patients presenting with myocardial infarction. Heart Lung Circ. 26(6), 566–571 (2017).
Google Scholar
Morovatdar, N. et al. Risk factor patterns for premature versus late-onset coronary artery disease in Iran: A systematic review and meta-analysis. Open Cardiovasc. Med. J. 13(1), 5–12 (2019).
Google Scholar
Benfante, R. J., Reed, D. M., MacLean, C. J. & Yano, K. Risk factors in middle age that predict early and late onset of coronary heart disease. J. Clin. Epidemiol. 42(2), 95–104 (1989).
Google Scholar
Tate, R. B., Manfreda, J. & Cuddy, T. E. The effect of age on risk factors for ischemic heart disease: The Manitoba Follow-Up Study, 1948–1993. Ann. Epidemiol. 8(7), 415–421 (1998).
Google Scholar
Sengul, C. et al. Comparison of psychosocial risk factors between patients who experience acute myocardial infarction before and after 40 years of age. Turk. Kardiyol. Dern. Ars. 39(5), 396–402 (2011).
Google Scholar
Milane, A. et al. Association of hypertension with coronary artery disease onset in the Lebanese population. Springerplus 3, 533 (2014).
Google Scholar
Muli, S. et al. Prevalence, awareness, treatment, and control of hypertension in older people: Results from the population-based KORA-age 1 study. BMC Public Health. 20(1), 1049 (2020).
Google Scholar
Benetos, A., Petrovic, M. & Strandberg, T. Hypertension management in older and frail older patients. Circ. Res. 124(7), 1045–1060 (2019).
Google Scholar
Pinto, E. Blood pressure and ageing. Postgrad. Med. J. 83(976), 109–114 (2007).
Google Scholar
Oliveros, E. et al. Hypertension in older adults: Assessment, management, and challenges. Clin. Cardiol. 43(2), 99–107 (2020).
Google Scholar
Lionakis, N., Mendrinos, D., Sanidas, E., Favatas, G. & Georgopoulou, M. Hypertension in the elderly. World J. Cardiol. 4(5), 135–147 (2012).
Google Scholar
Bellary, S., Kyrou, I., Brown, J. E. & Bailey, C. J. Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat. Rev. Endocrinol. 17(9), 534–548 (2021).
Google Scholar
Longo, M. et al. Diabetes and aging: From treatment goals to pharmacologic therapy. Front. Endocrinol. (Lausanne) 10, 45 (2019).
Google Scholar
Tchkonia, T. & Kirkland, J. L. Aging, cell senescence, and chronic disease: Emerging therapeutic strategies. JAMA 320(13), 1319–1320 (2018).
Google Scholar
Aggarwal, N. R. et al. Sex differences in ischemic heart disease: Advances, obstacles, and next steps. Circ. Cardiovasc. Qual. Outcomes 11(2), e004437 (2018).
Google Scholar
Prabakaran, S., Schwartz, A. & Lundberg, G. Cardiovascular risk in menopausal women and our evolving understanding of menopausal hormone therapy: Risks, benefits, and current guidelines for use. Ther. Adv. Endocrinol. Metab. 12, 20420188211013916 (2021).
Google Scholar
Pahwa, M. B., Seth, S. & Seth, R. K. Lipid profile in various phases of menstrual cycle and its relationship with percentage plasma volume changes. Clin. Chim. Acta 273(2), 201–207 (1998).
Google Scholar
Wu, T. T., Gao, Y., Zheng, Y. Y., Ma, Y. T. & Xie, X. Atherogenic index of plasma (AIP): A novel predictive indicator for the coronary artery disease in postmenopausal women. Lipids Health Dis. 17(1), 197 (2018).
Google Scholar
Jousilahti, P., Vartiainen, E., Tuomilehto, J. & Puska, P. Sex, age, cardiovascular risk factors, and coronary heart disease: A prospective follow-up study of 14 786 middle-aged men and women in Finland. Circulation 99(9), 1165–1172 (1999).
Google Scholar
Mumford, S. L., Dasharathy, S., Pollack, A. Z. & Schisterman, E. F. Variations in lipid levels according to menstrual cycle phase: Clinical implications. Clin. Lipidol. 6(2), 225–234 (2011).
Google Scholar
de Winther, M. P., Kanters, E., Kraal, G. & Hofker, M. H. Nuclear factor kappaB signaling in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 25(5), 904–914 (2005).
Google Scholar
Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41(24), 2313–2330 (2020).
Google Scholar
Jeong, S. M. et al. Effect of change in total cholesterol levels on cardiovascular disease among young adults. J. Am. Heart Assoc. 7(12), e008819 (2018).
Google Scholar
Yandrapalli, S., Nabors, C., Goyal, A., Aronow, W. S. & Frishman, W. H. Modifiable risk factors in young adults with first myocardial infarction. J. Am. Coll. Cardiol. 73(5), 573–584 (2019).
Google Scholar
Kaneko, H. et al. Lipid profile and subsequent cardiovascular disease among young adults aged < 50 years. Am. J. Cardiol. 142, 59–65 (2021).
Google Scholar
Gencer, B. et al. Efficacy and safety of lowering LDL cholesterol in older patients: A systematic review and meta-analysis of randomised controlled trials. Lancet 396(10263), 1637–1643 (2020).
Google Scholar
Mc Auley, M. T. & Mooney, K. M. LDL-C levels in older people: Cholesterol homeostasis and the free radical theory of ageing converge. Med. Hypotheses 104, 15–19 (2017).
Google Scholar
Martin, S. S. et al. Friedewald-estimated versus directly measured low-density lipoprotein cholesterol and treatment implications. J. Am. Coll. Cardiol. 62(8), 732–739 (2013).
Google Scholar
Miller, W. G. et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin. Chem. 56(6), 977–986 (2010).
Google Scholar
Aggarwal, D. J., Kathariya, M. G. & Verma, D. P. K. LDL-C, NON-HDL-C and APO-B for cardiovascular risk assessment: Looking for the ideal marker. Indian Heart J. 73(5), 544–548 (2021).
Google Scholar
Ferraro, R. A. et al. Contemporary management of dyslipidemia. Drugs 82(5), 559–576 (2022).
Google Scholar
Kessler, T. & Schunkert, H. Coronary artery disease genetics enlightened by genome-wide association studies. JACC Basic. Transl. Sci. 6(7), 610–623 (2021).
Google Scholar
Lorca, R. et al. Familial hypercholesterolemia in premature acute coronary syndrome. Insights from CholeSTEMI Registry. J. Clin. Med. 9(11), 3489 (2020).
Google Scholar
Kramer, A. I., Trinder, M. & Brunham, L. R. Estimating the prevalence of familial hypercholesterolemia in acute coronary syndrome: A systematic review and meta-analysis. Can. J. Cardiol. 35(10), 1322–1331 (2019).
Google Scholar
Sheikh, M. et al. Association of serum gamma-glutamyltransferase and premature coronary artery disease. Neth. Heart J. 25(7–8), 439–445 (2017).
Google Scholar
Kronenberg, F. Prediction of cardiovascular risk by Lp(a) concentrations or genetic variants within the LPA gene region. Clin. Res. Cardiol. Suppl. 14(Suppl 1), 5–12 (2019).
Google Scholar
Lee, S. R. et al. LPA gene, ethnicity, and cardiovascular events. Circulation 135(3), 251–263 (2017).
Google Scholar
link