Develop and validate machine learning models to predict the risk of depressive symptoms in older adults with cognitive impairment | BMC Psychiatry

Develop and validate machine learning models to predict the risk of depressive symptoms in older adults with cognitive impairment | BMC Psychiatry

  • Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, Gronseth GS, Marson D, Pringsheim T, Day GS, et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology. Neurology. 2018;90(3):126–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haigh EAP, Bogucki OE, Sigmon ST, Blazer DG. Depression among older adults: a 20-year update on five common myths and misconceptions. Am J Geriatric Psychiatry: Official J Am Association Geriatric Psychiatry. 2018;26(1):107–22.

    Article 

    Google Scholar 

  • Ismail Z, Gatchel J, Bateman DR, Barcelos-Ferreira R, Cantillon M, Jaeger J, Donovan NJ, Mortby ME. Affective and emotional dysregulation as pre-dementia risk markers: exploring the mild behavioral impairment symptoms of depression, anxiety, irritability, and euphoria. Int Psychogeriatr. 2018;30(2):185–96.

    Article 
    PubMed 

    Google Scholar 

  • Ismail Z, Elbayoumi H, Fischer CE, Hogan DB, Millikin CP, Schweizer T, Mortby ME, Smith EE, Patten SB, Fiest KM. Prevalence of depression in patients with mild cognitive impairment: a systematic review and meta-analysis. JAMA Psychiatry. 2017;74(1):58–67.

    Article 
    PubMed 

    Google Scholar 

  • Diniz BS, Butters MA, Albert SM, Dew MA, Reynolds CF. 3rd: late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. Br J Psychiatry: J Mental Sci. 2013;202(5):329–35.

    Article 

    Google Scholar 

  • Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.

    Article 
    PubMed 

    Google Scholar 

  • Saczynski JS, Beiser A, Seshadri S, Auerbach S, Wolf PA, Au R. Depressive symptoms and risk of dementia: the Framingham heart study. Neurology. 2010;75(1):35–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkins CH, Mathews J, Sheline YI. Late life depression with cognitive impairment: evaluation and treatment. Clin Interv Aging. 2009;4:51–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell AJ, Subramaniam H. Prognosis of depression in old age compared to middle age: a systematic review of comparative studies. Am J Psychiatry. 2005;162(9):1588–601.

    Article 
    PubMed 

    Google Scholar 

  • Hancock P, Larner AJ. Clinical utility of patient health questionnaire-9 (PHQ-9) in memory clinics. Int J Psychiatry Clin Pract. 2009;13(3):188–91.

    Article 
    PubMed 

    Google Scholar 

  • Mitchell AJ, Bird V, Rizzo M, Meader N. Diagnostic validity and added value of the geriatric depression scale for depression in primary care: a meta-analysis of GDS30 and GDS15. J Affect Disord. 2010;125(1–3):10–7.

    Article 
    PubMed 

    Google Scholar 

  • Hou Y, Liu W, He T, Chen A. Association between the performance of executive function and the remission of depressive state after clinical treatment in patients with depression. J Affect Disord. 2024;364:28–36.

    Article 
    PubMed 

    Google Scholar 

  • Wu C, Zhu S, Wang Q, Xu Y, Mo X, Xu W, Xu Z. Development, validation, and visualization of a novel nomogram to predict depression risk in patients with stroke. J Affect Disord. 2024;365:351–8.

    Article 
    PubMed 

    Google Scholar 

  • Rossa-Roccor V, Karim ME. Are US adults with low-exposure to methylmercury at increased risk for depression? A study based on 2011–2016 National health and nutrition examination surveys (NHANES). Int Arch Occup Environ Health. 2021;94(3):419–31.

    Article 
    PubMed 

    Google Scholar 

  • Alam MA, Sajib M, Rahman F, Ether S, Hanson M, Sayeed A, Akter E, Nusrat N, Islam TT, Raza S, et al. Implications of big data analytics, AI, machine learning, and deep learning in the health care system of Bangladesh: scoping review. J Med Internet Res. 2024;26:e54710.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albizu A, Indahlastari A, Suen P, Huang Z, Waner JL, Stolte SE, Fang R, Brunoni AR, Woods AJ. Machine learning-optimized non-invasive brain stimulation and treatment response classification for major depression. Bioelectronic Med. 2024;10(1):25.

    Article 

    Google Scholar 

  • Zhang Y, Wu X, Liu G, Feng X, Jiang H, Zhang X. Association between overactive bladder and depression in American adults: A cross-sectional study from NHANES 2005–2018. J Affect Disord. 2024;356:545–53.

    Article 
    PubMed 

    Google Scholar 

  • Wang XL, Feng HL, Xu XZ, Liu J, Han X. Relationship between cognitive function and weight-adjusted waist index in people ≥ 60 years old in NHANES 2011–2014. Aging Clin Exp Res. 2024;36(1):30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riley RD, Ensor J, Snell KIE, Harrell FE Jr., Martin GP, Reitsma JB, Moons KGM, Collins G, van Smeden M. Calculating the sample size required for developing a clinical prediction model. BMJ (Clinical Res ed). 2020;368:m441.

    Google Scholar 

  • Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Ann Intern Med. 1993;118(3):201–10.

    Article 
    PubMed 

    Google Scholar 

  • Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeung A, Fung F, Yu SC, Vorono S, Ly M, Wu S, Fava M. Validation of the patient health questionnaire-9 for depression screening among Chinese Americans. Compr Psychiatry. 2008;49(2):211–7.

    Article 
    PubMed 

    Google Scholar 

  • Sun Y, Kong Z, Song Y, Liu J, Wang X. The validity and reliability of the PHQ-9 on screening of depression in neurology: a cross sectional study. BMC Psychiatry. 2022;22(1):98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levis B, Benedetti A, Thombs BD. Accuracy of patient health questionnaire-9 (PHQ-9) for screening to detect major depression: individual participant data meta-analysis. BMJ (Clinical Res ed). 2019;365:l1476.

    Google Scholar 

  • Michel Lang [aut] PSa. Marc Becker [cre, aut]: Package: mlr3verse 0.3.1.

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koers MLMBL. mlr3measures.

  • Ginestet C. ggplot2: elegant graphics for data analysis. J Royal Stat Soc Ser A: Stat Soc. 2011;174(1):245–6.

    Article 

    Google Scholar 

  • Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26(6):565–74.

    Article 

    Google Scholar 

  • Sylvester S, Sagehorn M, Gruber T, Atzmueller M, Schöne B. SHAP value-based ERP analysis (SHERPA): increasing the sensitivity of EEG signals with explainable AI methods. Behav Res Methods. 2024;56(6):6067–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Panza F, Frisardi V, Capurso C, D’Introno A, Colacicco AM, Imbimbo BP, Santamato A, Vendemiale G, Seripa D, Pilotto A, et al. Late-life depression, mild cognitive impairment, and dementia: possible continuum? Am J Geriatric Psychiatry: Official J Am Association Geriatric Psychiatry. 2010;18(2):98–116.

    Article 

    Google Scholar 

  • Guan C, Amdanee N, Liao W, Zhou C, Wu X, Zhang X, Zhang C. Altered intrinsic default mode network functional connectivity in patients with remitted geriatric depression and amnestic mild cognitive impairment. Int Psychogeriatr. 2022;34(8):703–14.

    Article 
    PubMed 

    Google Scholar 

  • Hilbert S, Goerigk S, Padberg F, Nadjiri A, Übleis A, Jobst A, Dewald-Kaufmann J, Falkai P, Bühner M, Naumann F, et al. The role of self-esteem in depression: a longitudinal study. Behav Cogn Psychother. 2019;47(2):244–50.

    Article 
    PubMed 

    Google Scholar 

  • Kaplan GA, Roberts RE, Camacho TC, Coyne JC. Psychosocial predictors of depression. Prospective evidence from the human population laboratory studies. Am J Epidemiol. 1987;125(2):206–20.

    Article 
    PubMed 

    Google Scholar 

  • Henkel V, Mergl R, Möller HJ. Major depression is common in people over the age of 50, particularly in those at socioeconomic disadvantage, or with poor physical health and previous depressive symptoms. Evid Based Ment Health. 2005;8(1):25.

    Article 
    PubMed 

    Google Scholar 

  • Köhler CA, Carvalho AF, Alves GS, McIntyre RS, Hyphantis TN, Cammarota M. Autobiographical memory disturbances in depression: a novel therapeutic target? Neural plasticity. 2015;2015:759139.

  • Petkus AJ, Beam CR, Johnson W, Kaprio J, Korhonen T, McGue M, Neiderhiser JM, Pedersen NL, Reynolds CA, Gatz M. Gene-environment interplay in depressive symptoms: moderation by age, sex, and physical illness. Psychol Med. 2017;47(10):1836–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al Balushi M, Al Balushi S, Javaid S, Leinberger-Jabari A, Al-Maskari F, Al-Houqani M, Al Dhaheri A, Al Nuaimi A, Al Junaibi A, Oumeziane N, et al. Association between depression, happiness, and sleep duration: data from the UAE healthy future pilot study. BMC Psychol. 2022;10(1):235.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma Y, Liang L, Zheng F, Shi L, Zhong B, Xie W. Association between sleep duration and cognitive decline. JAMA Netw Open. 2020;3(9):e2013573.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asokan GV, Awadhalla M, Albalushi A, Al-Tamji S, Juma Z, Alasfoor M, Gayathripriya N. The magnitude and correlates of geriatric depression using geriatric depression scale (GDS-15) – a Bahrain perspective for the WHO 2017 campaign ‘depression – let’s talk’. Perspect Public Health. 2019;139(2):79–87.

    Article 
    PubMed 

    Google Scholar 

  • Chen X, Zheng Y, Zheng W, Gu K, Chen Z, Lu W, Shu XO. Prevalence of depression and its related factors among Chinese women with breast cancer. Acta Oncol (Stockholm Sweden). 2009;48(8):1128–36.

    Article 

    Google Scholar 

  • Gan YY, Yang J, Zhai L, Liao Q, Huo RR. Specific depressive symptoms, body mass index and diabetes in middle-aged and older Chinese adults: analysis of data from the China health and retirement longitudinal study (CHARLS). J Affect Disord. 2025;369:671–80.

    Article 
    PubMed 

    Google Scholar 

  • Selman A, Dai J, Driskill J, Reddy AP, Reddy PH. Depression and obesity: focus on factors and mechanistic links. Biochim Et Biophys Acta Mol Basis Disease. 2025;1871(1):167561.

    Article 

    Google Scholar 

  • Huang Y, Huang Z, Yang Q, Jin H, Xu T, Fu Y, Zhu Y, Zhang X, Chen C. Predicting mild cognitive impairment among Chinese older adults: a longitudinal study based on long short-term memory networks and machine learning. Front Aging Neurosci. 2023;15:1283243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li G, Li J, Tian Y, Zhao Y, Pang X, Yan A. Machine learning-based classification models for non-covalent Bruton’s tyrosine kinase inhibitors: predictive ability and interpretability. Mol Diversity. 2024;28(4):2429–47.

    Article 

    Google Scholar 

  • Yu S, Chen Z, Yu B, Wang L, Wu B, Wu J, Zhao F. Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme gradient boosting tree: a case study of Shanghai, China. Sci Total Environ. 2020;725:138229.

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *